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Resumo O principal objetivo deste trabalho é o desenvolvimento de uma solução
de hodometria para veículos com direção Ackermann. A solução tinha que
ser portátil, �exível e fácil de montar. Após o estudo do estado da arte e
uma pesquisa de soluções, a solução escolhida foi baseada em hodometria
visual. Os passos seguintes do trabalho foram estudar a viabilidade de utilizar
câmaras lineares para hodometria visual. O sensor de imagem foi usado para
calcular a velocidade longitudinal; e a orientação da movimento foi calculado
usando dois giroscópios. Para testar o método, várias experiências foram
feitas; as experiências ocorreram indoor, sob condições controladas. Foi
testada a capacidade de medir a velocidade em movimentos de linha reta,
movimentos diagonais, movimentos circulares e movimentos com variação
da distância ao solo. Os dados foram processados usando algoritmos de
correlação e os foram resultados documentados. Com base nos resultados, é
seguro concluir que hodometria com câmaras lineares auxiliado por sensores
inerciais tem um potencial de aplicabilidade no mundo real.





Keywords Automotive, Odometry, Visual Odometry, Robot Navigation, Autonomous
Robots

Abstract The main objective of this work is to develop a solution of odometry for
vehicles with Ackermann steering. The solution had to be portable, �exible
and easy to mount. After the study of the state of the art and a survey of
solutions, the solution chosen was based on visual odometry. The follow-
ing steps of the work were to study the feasibility to use line scan image
sensors for visual odometry. The image sensor was used to compute the
longitudinal velocity; and the orientation of motion was computed using
two gyroscopes. To test the method, several experiments were made; the
experiments took place indoor, under controlled conditions. It was tested
the ability to measure velocity on straight line movements, diagonal move-
ments, circular movements and movements with a changing distance from
the ground. The data was processed with correlation algorithms and the
results were documented. Based on the results it is safe to conclude that
odometry with line scan sensors aided by inertial sensors has a potential for
a real world applicability.
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Chapter 1

Introduction

1.1 Project Context

This work arose in the context of the ATLAS project of the Department of Mechanical
Engineering of the University of Aveiro, which is inserted in the �eld of advanced sensing
and active systems designed for automobiles and other mobile platforms. ATLAS is a
project that was started in 2003 to participate in Robotics Competitions. Since then three
scale models were developed and two of them participated in several robotics competitions
and won several prizes. The two winning robots are the Atlas20xx and the AtlasMV
(�gure 1.1). After the success of the project, a full sized prototype was created. This

Figure 1.1: The scale models, Atlas20xx on the left and AtlasMV [1].

prototype is the ATLASCAR and its mission is to serve as platform for research on
Advanced Driver's Assistance Systems. The vehicle is equipped with several state of the
art sensors (�gure 1.2). Lasers, Stereo Cameras, IMU, GPS, etc [2]. The main objective
of the project is to test algorithms and hardware for driver assistance and safety. The
project is evolving to deal with real road scenarios and the mission it to perceive not
only what is happening in the environment, but also within the vehicle.

1.2 Motivation

To allow for autonomous driving, driving assistance and monitoring of risk and manoeu-
vres aboard a car, it is necessary that the computerized system have access to good

1
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Figure 1.2: The current set of sensors [1].

estimates of the vehicle movements, in particular the displacement on the road. Some
modern upscale vehicles have this information, but the vast majority of the �eet does
not. Thus, arises the need to develop a system to estimate the position of the vehicle
wheels using odometry and Ackermann steering constraint. This information along with
other informations from the vehicle and the driver are important to active and passive
systems for driving assistance and safety.

ATLASCAR already has its own odometry system, the velocity is calculated with an
incremental encoder installed on one of the back wheels, the encoder is enclosed in an
apparatus �xed in the body of the car (Figure 1.3). The encoder is connected directly to
the wheel, so do not have any kind of multiplication. The encoder resolution is 50 PPR
this means that with the wheel's diameter of 0.55 meters we can get a new value of the
car's velocity every 3.49 centimetres.

Figure 1.3: Velocity measurement system on ATLASCAR [3].

The angle of the steering wheel is measured with a potentiometer connected through
a pulley system directly in the steering column. This mechanism is invasive and forced
modi�cations on the structure and devices of the steering column (Figure 1.4). The
potentiometer has a 10 kΩ resistance and the gear ratio through the pulley mechanism is
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1:3, the data is collected by a PIC18F258 micro controller with 10-Bit analog-to-digital
converter.

(a) (b)

Figure 1.4: Steering wheel angle measuring system [3].

1.3 Objectives

The main objective of this project is to develop an odometry system which is easily
installable and non invasive to the vehicle. It should be able to be used on most of the
road cars. The system should provide good estimates of velocity, distance traveled and
orientation of the car.

1.4 Structure of the Dissertation

The stages of this project are presented in the following chapters. The stages are orga-
nized as follows:

- Chapter 2 - State of the art
in this chapter is presented a brief history of the odometry, a study of the odometry

solutions and sensors, and �nally a survey of the commercial solutions;
- Chapter 3 - Study of the Solution
in this chapter the proposed solution is presented and a study of the algorithms to

be used is made;
- Chapter 4 - Experimental Procedure
in this chapter there is made a description of the materials and the experimental

procedure used, as well as the calibration of the equipments;
- Chapter 5 - Results and Discussion
in this chapter the experiment results are presented and described as well as its

discussion;
- Chapter 6 - Conclusions and Future Work
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in this chapter the conclusions and an analysis of the achieved objectives is performed.
As well as possible future work will be discussed.
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Chapter 2

State of the Art

One of the most important pieces of information for a robot is its position in the en-
vironment. In order for an autonomous robot to perform its tasks, its position and
orientation must be known. For an mobile robots its position can be classi�ed in two
categories: relative positioning and absolute positioning. A relative positioning system
is one which uses sensors on the robot's wheels or other navigation systems to calculate
the position without taking a �xed consideration. An absolute positioning system is one
which uses �xed a reference for position determination, such as the Global Positioning
Systems (GPS). One of the most fundamental techniques to position determination is the
use of encoders on the wheels, which is called Odometry. Odometry is very important to
have precise estimates on the wheel's velocity and orientation and combined with other
sensors it makes a reliable way to position estimate [4].

2.1 History of Odometry

Since the early times men found the need to measure distance and velocity. An odometer
is the device that measures the distance travelled by a vehicle and it can be electronic,
mechanical or the combination of two.

Possibly the �rst odometer was described by Vitruvius around 27 and 23 BC. The
odometer of Vitruvius was based on wheels of 1.2 m diameter turning 400 times, that
making one Roman mile, about 1400 m. At each revolution a pin on the axle hit a
400 tooth gear making one revolution per mile. This gear engaged another device that
dropped pebbles into a box and thus the distance travelled would be calculated by count-
ing the pebbles. It is unclear if the instrument was ever built at the time. Leonardo da
Vinci also drawn an odometer (Figure 2.1) based on the plans [5].

Figure 2.1: Odometer drawn by Leonardo da Vinci.
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6 2.State of the Art

Blaise Pascal and Wilhrlm Schickard, both, made the invention of the mechanical
calculator in the early of the 17th century. Pascal's invention, called Pascaline (Figure
2.2), was made in 1642. Thought it was not a odometer, the Pascaline used gears to
calculate measurements. Each gear contained ten teeth, the �rst gear moved the next
gear one position at each complete revolution, this is the principle used in the modern
odometers [6].

Figure 2.2: Pascaline, Pascal's calculator [6].

In 1698 Thomas Savery, an English military engineer and inventor, developed odome-
ters to measure the distance travelled by ships. In 1775 Benjamin Franklin, a statesman,
writer and inventor, built a odometer to measure the mileage of postal routes to analyse
the best routes for delivering the mail. In 1847 William Clayton, Orson Pratt, Appleton
Milo Harmon, invented the Roadometer that recorded the distance travelled by wagons.
The Roadometer was a pascaline inspired device that used gears to measure the distance
travelled (Figure 2.3) [7].

Figure 2.3: Roadometer, �rst used in May, 1847 [7].

Arthur P. and Charles H. Warner produced a device to measure speed of industrial
equipment which used a magnet in a rotating shaft to induce a magnetic pull to a metal
disk. This device became the �rst automobile speedometer in 1912 and became standard
equipment on most American-made cars [8].

2.2 Odometry

Odometry is the method that uses data from moving sensors to estimate the change
in position over time. Odometry is used to estimate, and not determine, the position
of a vehicle relative to a starting location. This method is sensitive to errors due to
the integration of velocity measurements over time to give position estimates. A robot
can have, for example, rotary encoders on its wheels or on its legged joints and use the
data from this sensors to measure how much the wheels have rotated, and knowing the
circumference of the wheel it can calculate the distance travelled.
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Odometry mostly uses encoders to measure wheel rotation and/or steering orienta-
tion, resolvers also can be used but encoders are usually the �rst choice. Odometry has
the advantage that it can be self-contained, and it is always capable of providing an
estimate of position of a vehicle. The disadvantage of odometry is that it must integrate
displacement measurements to give position estimates, this causes this method to be sen-
sitive to errors. The position error grows over time and an independent reference should
be used periodically to reduce the error [9].

Optical encoders are the most common sensors used in odometry. The main com-
ponents of the optical encoder's is a disc made of glass or plastic with transparent and
opaque areas, a light source and photo detector array that reads the pulses generated by
the optical pattern from the disc's position. Increasing the number of pulses increases the
resolution. These type of devices are relatively inexpensive and well suited for velocity
feedback low to high speed systems. Some encoders have two channels displaced one from
the other and by determining which one is the leading channel it is possible to calculate
the direction of rotation. The addition of a channel also has the bene�t of increasing
the resolution (Figure 2.4). There are some downsides associated to this sensors, in the
event of a power interruption all relative position information is lost, this sensors are also
more sensitive to damage by external agents [10].

Figure 2.4: The phase relationship between channel A and B can be used to determine
the direction of rotation. With the unique states S1 to S4 it is possible to increase the
resolution with a multiplication factor of 4 [11].

Another type of optical encoder which can be used to measure wheel's orientation
is the absolute encoder. The application of this type of sensor is mostly associated
to slower rotational applications where the loss of the position information cannot be
tolerated. Absolute encoders produce a unique digital code for each distinct angle of the
shaft (Figure 2.5). Each track of the disk codes a bit, increasing the number of tracks
increases the resolution and also increases the diameter of the disk and consequently the
decrease in shock and vibration tolerance. Absolute encoders are best suited for slow
rotating systems such as direction angle. The main downside of this type of sensor is the
increasing fragility and cost as the resolution increases [10].

Encoders are the most commonly used sensors to odometry purposes. They provide
a straightforward encoding scheme and digital output, this results in a low-cost reliable
package with good noise immunity [10].

Encoders like the ones used on the ATLASCAR are inexpensive and higher resolution
encoders are highly available and still at a low cost. 1024 pulse encoders are very common
and installed on the car would provide a speed measurement at every 1.7 millimetres,
which is a very high resolution. This method still has the disadvantage of having an error
accumulation that grows over time. Wheel's geometry changes are the most common

Ricardo Luís da Mota Silva Dissertação de Mestrado / Master Thesis
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Figure 2.5: The line of light passes through the coded pattern of the rotor and that
corresponds to a unique code that speci�es the absolute angular position [12].

source of error due to �uctuation of tire pressure, tire diameter, slippage of the wheels
and tire tread wear.

Most of the modern cars, the ones with ABS systems, use a speed sensor based on
inductive principles. Coupled to the wheel's axle there is a spur gear and next to it
there is an inductive sensor that generates a pulse every time a tooth passes (Figure 2.6).
This kind of sensors is very robust, they do not need contact between the moving parts
and the sensor is immune to water and dust. Although, they have some disadvantages,
measurements may be a�ected by magnetic �elds, also they do not provide accurate
measurements for low speed movements [13].

Figure 2.6: ABS inductive velocity sensor.

2.3 Inertial Navigation

This method measures rate of rotation and acceleration with gyroscopes and/or ac-
celerometers. The measurements of a gyroscope must be integrated once to get angular
displacement and accelerometer data must be integrated twice to obtain linear displace-
ment. This sensors have the advantage that they are self-contained and they the mea-
surements are independent of the wheel's geometry changes and wheel's slippage. On
the other hand this type of inertial devices have a natural drift which is a source of error,
this drift accumulates over time causing a deviation on the measurements. This data
then needs to be integrated to obtain velocity and position and the error grows without

Ricardo Luís da Mota Silva Dissertação de Mestrado / Master Thesis



2.State of the Art 9

bounds. For this reason, inertial sensors are unsuitable for accurate positioning over an
extended period of time [10].

Along with odometry, gyroscopes are the most used sensors for determining the ori-
entation of a mobile robot. Gyroscopes can be classi�ed in several categories, the most
common types of gyroscopes are mechanical, optical and piezoelectric vibrating gyro-
scopes.

The mechanical gyroscope is a rotation sensor based on the inertial properties of a
rapidly spinning rotor, this technology is known since the early 1800s. This gyroscope
is composed by a rotating mass mounted on a support with three moving axes (Figure
2.7). The mass is rotating at a constant velocity and when the support is inclined causes
gyroscopic pressetion, which is a rotation of the support to compensate the inclination. A
modern mechanical gyroscope provides a voltage or frequency output signal proportional
to the turning rate. High precision mechanical gyroscopes are expensive, also they are
big on size and heavy. For this reasons mechanical gyroscopes have a limited application
in mobile robotics [10].

Figure 2.7: Typical mechanical gyroscope con�guration [10].

Piezoelectric vibrating gyroscopes use Coriolis forces to measure rate of rotation.
In a typical con�guration three piezoelectric transducers are mounted on the sides of
a triangular prism. If one of the transducers is at a constant resonance frequency the
vibrations will be transmitted at equal intensity to the others transducers. If a rotation is
applied to the system the other two transducers will measure vibrations with a di�erence.
This voltage di�erence is proportional to the rate of rotation [10]. Inexpensive vibrating
structure gyroscopes using MEMS technology, a technology for microelectronics, have
become widely available. These are packaged into integrated circuits providing analog or
digital outputs or sometimes both. Some units integrate gyroscopes for multiple axes in
a single part. Some units even incorporate multiple-axis gyroscopes and accelerometers
to provide a six degrees of freedom output. These units are called Inertial measurement
units, or IMUs (Figure 2.8). This type of sensor is the most used in consumer electronics
like smart-phones due to their small size and low energy consumption. They are also
used in the automotive and industrial robotic �eld. Some units became so inexpensive
that they are also used by hobbyists [14].

The other type of gyroscope is the optical gyroscope. Optical gyroscopes are build
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(a) (b)

Figure 2.8: POLOLU - MinIMU9DOF, an inertial measurement unit (IMU) that has a
3-axis gyro, a 3-axis accelerometer and a 3-axis magnetometer [15].

with no moving parts, being a maintenance free device. Its design is based on two �bber
optics coils with the same length on which two laser beams with opposite directions
travel. If a rotation is applied the duration of the travel by each laser beam will be
di�erent, this is known as the Sagnac e�ect. Recently optical gyroscopes have become
available at competitive prices being the choice for applications with high precision needs
[10].

2.4 Visual Odometry

Visual odometry is a technique that estimate robot location using visual information
(images); the position is de�ned as the incremental estimation of robot motion from
image sequences using an on-board camera. Visual odometry is a method highly used
on o�-road robots like space robotic exploration missions. The motion of the robot is
estimated with calculation of the pixel displacement between two consecutive frames,
this is called optical �ow [16].

The optical �ow is mostly calculated based on features that stand out in the image,
this method doesn't work well on smooth or texture-less surfaces like concrete and asphalt
roads. The other method, with better results, is template matching. This method use
a small area of a image and tries to �nd it in the next frame, if found, it is possible to
calculate the optical �ow [17].

There are two main di�erent approaches in hardware, the �rst uses a camera looking
forward and the velocity is calculated based on the movement of the surroundings. This
method is very sensitive to lighting changes and a high quality image is needed. The
other method uses a camera looking directly at the ground, this is the principle used in
most optical mice. This method needs simpler computation and hardware and lighting
conditions can be handled better [18].

The literature suggests visual odometry as a better odometry system in terms of
precision and error accumulation. Navid Nourani-Vatani et al [17, 19], obtained good
results using a common webcam at 20 fps and a image resolution of 640 x 480 pixels;
they used template matching with a searching area of 320 x 320 pixels. The acquisition
speed was set to 20 fps due to the high processing time, 42 ms/frame, this is a clear
limitation. Also due to the low frame rate, the velocity of the vehicle was limited to 1.5
m/s, which is very low. Nevertheless, this method showed better results than common
wheel's odometry. This method is illustrated in Figure 2.9; the image displacements are
translated to vehicle displacement to estimate its position and trajectory.
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Figure 2.9: Simpli�ed model of a vehicle with Ackermann-like steering model. The pixel
displacement, ∆U and ∆V , translates to vehicle displacement ∆x and ∆θ, which are
de�ned with respect to the center of motion corresponding to the midpoint of the rear
axle [17].

The velocity allowed by the measuring unit is are mostly in�uenced by the sampling
rate and the size of the image. If the velocity is higher than the limit, there will be no
overlap of the frames and there will be no similarity between the successive images; this
will cause the impossibility of the estimation of velocity [18]. So, for car-like velocities
it is necessary a very high sampling rate camera, this brings di�culties as the computa-
tional power needs to be considerable. Viktor Kálmán [18] suggests the use of line scan
cameras to achieve high velocities and resolution, using less computational resources than
a common matrix camera. In his work he made simulations and came to the conclusion
that it is possible to measure movements of vehicles up to the range of 100m/s with high
accuracy.

Visual odometry has clear advantages over the common wheel's odometry. It is
possible to measure velocity independent of the variations in tire pressure, tire diameter,
uneven terrain and tire slip. It is possible to obtain a compact and easy to install module.
However, there are several drawbacks, the lighting is an important factor (and it isn't
always possible to control), also the sensors are high price and sophisticated.

2.5 Commercial Solutions

Every car on the roads have a odometer on the dashboard that shows the instantaneous
velocity, although most of them have a odometer actuated mechanically so that there is
no electrical signal that can be measured.

There are already some companies that sell devices capable of measuring wheel's
speed and orientation. Most of this devices are used by automotive manufacturers to
test the dynamics and durability of their products.

The company Kistler Automotive sells various sensors that can be used to measure
velocity and direction of a car, they provide one product that measures wheel's rotation
and others that are optical and measure velocity and orientation without contact. The
WPT Sensors is a sensor that is universally adaptable for acquisition of vehicle wheel
speed (Figure 2.10). This sensor consists of an optical incremental encoder and has
1000 pulses in its standard con�guration. Its applications are wheel slip measurement,
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acceleration and braking tests, ABS testing. [20]

Figure 2.10: WPT sensors from Kistler Automotive [20].

Kistler has another kind of solution based on optical sensors, the 2-Axis Non Contact
Optical Velocity and Slip Angle Sensors. These sensors provide slip-free measurement
of distance, velocity and slip-angle which is the angle between a rolling wheel's actual
direction of travel and the direction towards which it is pointing (Figure 2.11).

Figure 2.11: 2-Axis Non Contact Optical Velocity and Slip Angle Sensors [21].

Figure 2.12: POS LV

Applanix provides a solution based on GPS and inertial sensors, the POS LV (Figure
2.12). POS LV is a position and orientation system, utilizing integrated inertial tech-
nology to generate stable, reliable and repeatable positioning solutions for land-based
vehicle applications.The product generates a true representation of vehicle motion in all
three axes, works in areas of intermittent, or no GPS reception, computes wheel rotation
information to aid vehicle positioning, embedded GPS receivers provide heading aiding
to supplement the inertial data. [22]
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Chapter 3

Study of the Solution

The main objective of this project is to develop an odometry system which is easily
installable and non invasive to the vehicle. The system should provide good estimates of
velocity, distance traveled and orientation of the car. This chapter contains a study of
the solutions including a �nal proposed solution.

As stated in the State of the Art Chapter, there are three kinds of odometry solutions
to solve this problem, common odometry with wheel's sensors, visual odometry and
inertial sensors.

Visual odometry and inertial sensors have great advantages over the common odome-
try, mostly because this sensors are small, compact and can be mounted in a non-invasive
way. When using wheels sensors there is the need to develop an apparatus to support
them and this apparatus needs to be easily installable.

Using only inertial sensors is not good, as to obtain the displacement one needs to
integrate the acceleration, from accelerometers, two times and to obtain orientation we
need to integrate angular velocity, from gyroscopes, one time. Integrating acceleration
introduces cumulative errors due to noise which makes the inertial sensors the least
suitable for the objective.

Actual GPS equipments became a�ordable and accurate enough for speed measure-
ment. However they depend on satellite visibility, which makes it ine�ective in environ-
ments with obstacles and indoor locations.

In the following subsections two of the possible solutions will be presented, a me-
chanical solution using encoders to measure wheel's velocity and orientation; and a vi-
sual odometry solution using a line scan camera to compute velocity plus a gyroscope to
compute orientation.

3.1 Mechanical Solution

For a solution using encoders there are several ways and combinations to solve the prob-
lem. The next topics are the chosen solutions to be discussed.

� One encoder in each of the rear wheels

� with this con�guration it is possible to calculate the velocity and orientation
with the di�erence in velocity on the two wheels. This is a simple con�gura-
tion, with low setup complexity and low cost. Although we can calculate the
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14 3.Study of the Solution

vehicle orientation angle, this system doesn't provide the front wheel orienta-
tion which is a very important information;

� Encoder on one of the wheels and angle monitoring of the steering wheel

� This solution implies the existence of some device on the inside of the vehicle
cabin; it is very hard to install a device on the steering wheel without it being
an obstacle to the driver;

� Encoder and angle monitoring in a single front wheel

� This is a practical solution because with one single device we can monitor all
the wanted magnitudes, this makes it a good solution in terms of compactness
and easy to setup. The major downside is the complexity of the apparatus
needed to support the sensors to keep with all the front wheel degrees of
freedom;

� Encoder in one of the rear wheels and angle monitoring of one of the front wheels

� With this con�guration we can monitor both wheel's velocity and steering
angle. There is the downside of the need of two separate devices, one for the
front and one for the rear wheel. However, this is a low complexity system to
produce and setup.

Figure 3.1: Illustration of a possible mechanical solution and its main components.

A mechanical solution is proposed, as in the Figure 3.1. The solution consists of an
apparatus mounted on one of the front wheels to serve as a support for an encoder for
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wheel's velocity measurement and another encoder or potentiometer for angle measure-
ment. As shown in Figure 3.2, the equipment is �xed to the car's body with suction cups
and there are several adjustments to meet the geometry variability of the vehicle.

Figure 3.2: Illustration of the device assembly.

This solution provides all the necessary information in only one wheel. A high reso-
lution encoder can be used to provide a high sampling rate of velocity. For the angle of
the wheel, a multi-turn potentiometer or an absolute encoder might be used to provide
an absolute positioning of the steering angle. The system can be removed and installed
on a variety of vehicles due to the adjustments that it provides. However, the rigidity
of the system and its constraints can make it fragile for a more dynamic and aggressive
driving situation. Also the system being out of the bounds of the car's body may limit
its use due to being to exposed to the environment. Given these limitations, the optical
solution will be further detailed and studied.

3.2 Optical Solution

Horn et. al. [23] used two cameras on a robot, one looking forward to estimate yaw
rate and forward velocity and the other facing down to estimate two dimension velocity.
They found that the camera facing down gave the best results for longitudinal and lateral
velocity. The tests were made at low speed, lower than 1 m/s.

Nourani-Vatani et. al. [24] also used a similar method with a ground-facing matrix
camera mounted on a passenger car. The experiments were at around 1m/s. The veloc-
ity measurements had errors comparable to the wheel speed sensor and the cumulative
odometry errors were at around 5% after 100m traveled.

It is clear that common matrix cameras are not suitable for odometry to vehicles with
car like speeds. Even with high speed matrix cameras, the amount of data to process
would be extremely di�cult to compute in real-time.

In his PhD thesis, Kálmán [18], suggests the use of line scan cameras to estimate
robot's longitudinal velocity. His method suggests that one can compute correlation be-
tween successive lines and with that information compute the pixel displacement between
them. Line scan cameras provide high resolution and high frame rate at a lower cost than
matrix cameras, this makes them suitable to be used at higher speeds. Kálmán created
a simulator in which he tested the ability for line sensors to be used to estimate robot's
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velocity; he found that a sensor such as the S3901 from Hamamatsu, which works at
15600 fps, can measure velocity to a maximum of 120 m/s or 432 km/h.

Instinctively, one might think that image overlap is impossible when only a line is
captured from the ground. Wide pixel sensors or the integrating e�ect from the lens
can be used to capture more information from the ground. Figure 3.3 from [18], shows
the integrating e�ect of the lens on a line sensor. On the left we can see the area being
projected on a matrix camera pixels and on the right we can see that the same area is
projected on a single line of a line scan camera, providing an integrating e�ect.

Figure 3.3: Illustration of the imaging of a matrix camera and a line-scan camera with
cylindrical lens [18].

A line scan camera can only detect movements that are parallel to its axis, so it
only provides one dimensional information. This brings the problem that the sensor
needs to ensure good measurements even when movements perpendicular to its axis
happen. This happens when the vehicle has a circular or perpendicular movement, this
can induce measurement errors as the successive line might have a pattern change from
the previous one. This is illustrated in Figure 3.4 from [18]. On the left we can see a
parallel movements and it is clear that the successive snapshots can have overlap and a
common area in which we can compute correlation. On the right we can see the problem
of a sideways movement causing the overlap to be smaller, which will cause a weaker
correlation and induce error. This error can be reduced using the integrating e�ect from
the lens, a wider pixel sensor or by a larger �eld of view. Also the sampling rate can
be high enough that the successive snapshots will a small displacement and thus capture
the same texture elements.

Figure 3.4: Illustration of the problem of sideways motion [18].

3.3 Solution Description

The velocity of vehicles and mobile robots can be measured in many ways. The best
solution depends mostly on the application. The type of sensor to be used may also
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depend on the platform kinematics.
Optical sensors provide the most information, and with the current processing capa-

bilities available, these sensors are widely used today. The main advantage is that they
provide information to movement estimation which is independent to the locomotion sys-
tem. A measuring system using optical sensors also can be compact and self-contained
making it easier to install, this is important as one of the objectives of this work is to
develop a system which is removable.

For the reasons stated, the optical solution is the most suited for the objectives of
this thesis. The mechanical solution has constraints which may limit its use on some
vehicles, has a complicated setup and causes a visual impact. With the given potential
of the optical sensors, this work will focus on the study of an optical based solution.

Direction

of motion

Figure 3.5: Optical solution proposed.

The optical solution proposed is based on a line scan sensor. These sensors are
only one dimensional and, thus, only provide longitudinal velocity. There is the need of
another sensor to estimate the orientation, to do so, the use of gyroscopes is proposed.
On Figure 3.5 there is a schematic of the solution proposed. The main components are
as follows:

Line scan sensor: the main component is the line scan sensor; as said before, it
should have a high rate and, if possible, have wide pixels to provide an integrating e�ect
and thus capture more information from the ground. Several line sensors are available,
the LIS-770i from Panavision Imaging [25] and the S3901 from Hamamatsu [26] both
provide wide pixels. The RPLIS2K-EX form Dynamax Imaging [27] is a high resolution
sensor (2048x1), they also provide a 2048x4 resolution sensor, the DLIS2K, which can
be a interesting solution to the problem of sideways movements.

Gyroscopes: The use of gyroscopes is for orientarion measurements. For more
reliable readings the use of two gyroscopes is proposed. As stated by Rafeiro [28], using
redundancy from two gyroscopes decreases the errors from the gyroscope's drift.

Optics: this unit should be used to provide the adequate �eld of view and also the
integrating e�ect. The distance to the ground is constantly changing do to suspension
motion and unevenness of the ground, resulting in a variable �eld of view and miscali-
bration, which can induce measurement errors. To solve this problem a telecentric lens
can be used; these lenses have a magni�cation which is invariant to the distance [29].
Magni�cation of a conventional lens can be made invariant to defocus by simply adding
an aperture at an analytically derived location [30].
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Illumination: the illumination proposed is a high power LED array. Because of the
low exposure time, high speed camera sensors need a big amount of light to have a good
quality image. Infra-red illumination is the best solution, specially if the sensor is to be
used on a car and the light might be a distraction.

Processing Unit: the processing unit needs to be able to do the acquisition of the
high speed sensor and process the data. Microprocessors might not be suitable to do
that as line scan sensors usually have a pixel clock that works in the MHz range and
common microprocessors are not able to do acquisition at that rate. Thus the proposed
is a unit composed of a FPGA or CPLD, which are equipments commonly used for high
speed data computing and can do parallel computing which speeds the process.

3.4 Principles of Linear Image Sensors

An image sensor is a device that converts an optical image into an electric signal. They
are used mostly in digital cameras and other imaging displays. The early sensors were
video camera tubes; the modern sensors are semiconductor charge-coupled devices (CCD)
or active pixel sensors in complementary metal-oxide-semiconductor (CMOS), Figure 3.6.
Both have the same basic principle of converting light to an electric signal [31].

Figure 3.6: Image sensors from Teledyne DALSA - CCD (left) and CMOS (right) [31].

A CCD is a device in which every pixel's charge is converted to voltage through a very
limited of outputs, often just one. After the conversion the output is sent as an analog
signal. They have the advantage of high uniformity that contributes to image quality.
In a CMOS sensor, each pixel has its own hardware for charge to voltage conversion and
other circuitry so the chip output is completely digital. This has the disadvantage of
increasing complexity and reduced area for light capture. The uniformity of the pixels
is lower due to each pixel having its own voltage conversion, but with that it is the
advantage of high speed [31].

Figure 3.7: Linear image sensors from Teledyne DALSA - CCD (left) and CMOS (right)
[31].
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The solution proposed in this work is based on line scan image sensors. This sensors
are also available as CCD or CMOS, like the ones shown in Figure 3.7. Most of the
applications of linear sensors in machine vision require high speed and high frame rates,
for this reason CCDs are a technology in decay. On Figure 3.8 it is possible to see how
a linear image sensor works. A CCD has usually one charge to voltage converter that
operates for all the pixels, opposed to the individual converters on a CMOS. On a CMOS
the conversions are made in parallel so the image acquisition is extremely fast.

Line scan cameras usually use multiple outputs methods to increase image sampling
rates. Typical line-scan cameras use the following output methods: single tap, dual taps,
triple taps, quad taps, and octal taps [32].

Figure 3.8: Illustration of the working principles of a CCD vs CMOS [31].

The most common output methods in line scan cameras are the single tap, dual taps
and quad taps [32]. The single tap is a method in which the photodiodes of a linear
image sensor converts the light captured into an electrical signal and transmit it through
a single output, this method is illustrated in Figure 3.9.

Figure 3.9: Illustration of the single taps data output method [32].

The dual tap is a method in which the photodiodes of a linear image sensor converts
the light captured into an electrical signal and transmit it through a dual output. Dual
taps can be of two di�erent types, the �rst is Even/Odd Output ; in this method separates
the light captured into even and odd components to be converted to electrical signal. This
method is illustrated in Figure 3.10. The other method for dual tap is the Front and
Rear Output and the main diference from the previous one is the it separates the linear
image sensor in front and rear components, as illustrated in Figure 3.11.

The quad taps are a combination of the two dual taps methods. In this case the two
sets of even and odd components are divided each by front and rear to generate four
outputs. This process is illustrated in Figure 3.12.
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Figure 3.10: Illustration of the dual taps - even/odd data output method [32].

Figure 3.11: Illustration of the dual taps - front/rear data output method. [32].

Figure 3.12: Illustration of the quad taps data output method. [32].
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3.5 Ackermann Steering Geometry

The purpose of the Ackermann steering geometry is to avoid the necessity for tires to slip
sideways when following a curved path. This geometry assures that all the wheels have
the axles arranged so that when describing a curve they point to the same center point.
As the rear wheels are �xed together, this center point needs to be a line extension of
the rear axle. For the axles of the front wheels to intersect this centre point it is required
that the inside wheels is turned at a greater angle than the outside one [33].

Figure 3.13: In an Ackerman-steered vehicle, the extended axes for all wheels intersect
in a common point [10].

The model of the Ackermann steering geometry is illustrated in Figure 3.13. Such a
geometry satis�es the Ackermann equations [34]:

cot(θi)− cot(θo) =
d

l
(3.1)

where: θi is the relative steering angle of the inner wheel; θo is the relative steering
angle of the outer wheel; l is the longitudinal wheel separation and d is the lateral wheel
separation.

The vehicle steering angle θSA can be simpli�ed as the angle of an imaginary wheel
located at the center, P2 shown in the Figure 3.13. θSA can be expressed in terms of
either the inside or outside steering angles (θi or θo) as follows [34]:

cot(θSA) =
d

2l
+ cot(θi) (3.2)

or,

cot(θSA) = cot(θo)−
d

2l
(3.3)

Modern cars now used an Ackermann derived steering and not a pure Ackermann.
This is due to dynamic concerns where a traditional geometry has disadvantages, but
for low-speed maneuvers the principle is the same [34]. Ackermann-like steering provides
good traction and ground clearance for all-terrain operation. Ackerman steering is thus
the method of choice for outdoor autonomous vehicles.
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The characteristics of this steering geometry are important as if the image sensor is
mounted on one of the car's axles, the line captured will always be tangential to the arcs
described by the wheels. This means that Ackermann steering, under normal conditions,
ensures that no sideways movement is made. This assumption is of great importance
to the solution proposed as this is essential to obtain correlation between consecutive
lines. The solution proposed is not suitable for high lateral displacement vehicles, such
as omnidirectional vehicles; for these a di�erent combination of sensors is required.

3.6 Correlation Methods

Two successive images of a line sensor are only two vectors of 1 x n dimensions where n is
the resolution of the sensor. This fact makes it possible to use simpler algorithms than the
ones needed to process 2-D images from matrix sensors. Correlation between 2-D images
is based on optical �ow algorithms and template matching techniques. When dealing with
1-D samples there are several methods to compute its similarity. Kálmán [18], suggests
the use of similarity coe�cients such as Pearson' correlation, cosine similarity and others,
described in following subsection. An obvious and e�ective method to compute similarity
between two samples is cross-correlation, widely used in signal processing, described in
subsection 3.6.2.

3.6.1 Similarity Coe�cients

Euclidean distance - is the distance between two points in a straight line. For the
points P(p1, p2, ..., pn) and Q(q1, q2, ..., qn) the distance is calculated as follows:

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2 (3.4)

Manhattan distance - is the distance between two points in a grid-like path, with
a strictly horizontal and/or vertical path, as opposed to the diagonal or straight line
distance:

d(p, q) =

n∑
i=1

|qi − pi| (3.5)

Pearson correlation - Pearson correlation coe�cient measures the linear correlation
between two variables X (x1, x2, ..., xn) and Y (y1, y2, ..., yn). The coe�cient can take a
value between +1 and -1, where 1 is total positive correlation, 0 is no correlation, and -1
is total negative correlation. For a sample Xi and Yi. the Pearson correlation coe�cient
is:

r =
1

n− 1
×

n∑
i=1

(
Xi − X̄
sX

)(
Yi − Ȳ
sY

)
(3.6)

where

Xi − X̄
sX

(3.7)
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X̄ =
1

n

n∑
i=1

Xi (3.8)

sx =

√√√√ 1

n− 1

n∑
i=1

(
Xi − X̄

)2
(3.9)

are the standard score, sample mean, and sample standard deviation, respectively.
Spearman correlation - The Spearman correlation coe�cient is the nonparametric

version of the Pearson correlation coe�cient. Spearman's correlation coe�cient, mea-
sures the strength of association between two ranked variables. Spearman's rank corre-
lation coe�cient, ρ, is computed from these:

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(3.10)

As the Pearson's correlation coe�cient, the Spearman's correlation coe�cient also
can take a value between +1 and -1.

Cosine similarity - is a measure of similarity between two vectors by calculating
the cosine of the angle between them. For 0o the cosine is 1, and less than 1 for any
other angle. It measures the similarity of two vectors by calculating its orientation: two
vectors with the same orientation have a Cosine similarity of 1, the value decreases to
0 as the vectors di�er in orientation, and two opposed vectors have a similarity of -1,
independently of their magnitude. Given two vectors X and Y , the cosine similarity,
cos(θ), is derived from the dot product and magnitude as follows:

similarity = cos(θ) =
X · Y
‖X‖‖Y ‖

=

∑n
i=1XiYi√∑n

i=1(Xi)2
√∑n

i=1(Yi)
2

(3.11)

3.6.2 Cross-Correlation

To compute the similarity between two vectors an obvious algorithm is the cross-correlation.
Cross correlation is mostly used in signal processing and is a measure of similarity of two
waveforms as a function of a time-lag applied to one of them. This method has applica-
tions in pattern recognition, digital signal processing and others [35].

Cross-correlation is mostly used to compute similarity between signals in the time
domain. l, called lag, is the time-shift between the two signals. A sequence y(n) is said
to be shifted by l samples with respect to the reference x(n). Cross-correlation is de�ned
as follows:

rxy(l) = (x ? y)(l) =
∞∑

n=−∞
x(n)y(n− l) =

∞∑
m=−∞

x(m+ l)y(m) = ryx(−l) (3.12)

for convenience it can be normalized as follows:

ρxy(l) =
rxy(l)√

rxx(0)ryy(0)
(3.13)
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Considering the sequences x and y to be similar and di�ering only by a shift. Cross-
correlation can be used to compute how much y must be shifted to be identical to x. This
method slides the sequences along each other and calculates the integral of the product
at each shift. The value of (x ? y) reaches a maximum when the two sequences are more
similar, this happens because the product of the two functions is higher when the peaks
are aligned.

For machine vision applications, several authors [36, 37] suggest the use of cross
correlation in frequency domain. For this the discrete Fourier transform (DFT) is used.
The sequence of N complex numbers x0, x1, . . . , xN−1 is transformed into an N-periodic
sequence of complex numbers:

X(k) =
N−1∑
n=0

x(n)e−j2πkn/N , 0 ≤ k ≤ N − 1. (3.14)

the Inverse discrete Fourier transform is given by:

x(n) =
1

N

N−1∑
n=0

X(k)ej2πkn/N , 0 ≤ n ≤ N − 1. (3.15)

Being F the Fourier transform operator, and F{x} and F{y} are the Fourier trans-
forms of x and y, respectively. Then, similarly to convolution theorem:

F{x ? y} = F{x} · F{y} (3.16)

where · denotes point-wise multiplication. By applying the inverse Fourier transform
F−1, we can write:

x ? y = F−1{F{x} · F{y}} (3.17)

The fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier
transform (DFT) and its inverse. An FFT computes those transformations by factorizing
the DFT matrix into a product of sparse (mostly zero) factors. Such factorization can
result in signi�cant savings in the computational complexity. With the Fourier transforms
one can use the property from equation 3.17 to reduce the cross-correlation to simple
products, this reduces signi�cantly the computational complexity of the whole process of
cross-correlation. Several FFT algorithms are described in detail in [35].

3.6.3 Algorithms

To use the similarity coe�cients methods to compute the displacement between two
snapshots it is necessary an algorithmic procedure. The algorithm used is as illustrated in
Figure 3.14. First a line scan is captured, then the second line; the correlation coe�cient
is computed; a shift is applied to the samples and the correlation is computed again, this
step is repeated k times until the lines reach 60 % overlap, as suggested by Kálmán [18];
at last the maximum correlation is found and its index corresponds to the displacement
between the samples. This procedure is repeated for each new line scan.

For example, in Figure 3.15 are shown two successive snapshots, the plots represent
the pixel intensity of each image. After applying the algorithm there is a correlation
coe�cient for each shift, as shown in Figure 3.16, and the displacement of the two
snapshots can be found by locating the maximum of the plot. In this example the
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displacement was 80 pixels and the correlation coe�cient at that peak was 0.9028. The
procedure is then repeated for the following lines.

Figure 3.14: Illustration of the algorithm using the similarity coe�cients. (Adapted from
[18].)
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Figure 3.15: Two successive line scans with 80 pixels displacement.

For the cross-correlation the process is simpler, the algorithm consists in performing a
sliding dot product between the two image samples. This method is already implemented
in MatLab, using FFT, by the xcorr() function. On Figure 3.17 there is an example of
applying cross-correlation to the line-scans from Figure 3.15. If the lines have N number
of pixels, the result will be a 2N −1 size vector of correlation coe�cients, in this case the
lines have 2048 pixels and the result from cross-correlation is a 4095 length vector with
the correlation coe�cients for each shift. In this example the displacement calculated
was also 80 pixels with a correlation value of 0.9305.
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Figure 3.16: Pearson's correlation coe�cients between the two line scans.
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Figure 3.17: Cross-correlation coe�cients between the two line scans.
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Chapter 4

Experimental Procedure

This chapter describes the experimental procedure to test the algorithms and techniques:
�rst, the materials and setup used, then the details and the assumptions made in the
experimental procedure and the variables to be studied.

4.1 Equipments

The camera used on the experimental procedure was an industrial line scan camera. The
model was P2-4x-04K40 (7 µm) from Teledyne DALSA (Figure 4.1).

Figure 4.1: Line scan camera [38].

The speci�cations of the camera are shown in the table 4.1. The hardware interface
is Camera Link, a high-speed serial standard; this imposed some limitations and the
acquisition had to be done on Windows workspace due to the lack of drivers in Linux.
The software used was the SaperaLT, provided by Teledyne DALSA, which was used to
capture the frames to a video �le to posterior computational processing. This camera
model is high speed and is highly con�gurable; it has the ability to operate from 350 Hz
to 36000 Hz line rate, and with a resolution from 128 to 4096 pixels [38].

The optics are the model Rodagon 50 mm f/2.8 and its speci�cations are shown in
table 4.2.

To prove the ability of this method, it is necessary to make experiments with several
types of movements. The movements were made using an industrial robot to ensure
repeatability. The robot is a six degrees of freedom anthropomorphic robot FanucM −
6iB6s capable of manipulating of up to 6 kg objects (Figure 4.2). The robot is well
calibrated and has a repeatability of ± 0.08mm [40], thus its movement was taken as
ground truth. The robot gives its position data through a TCP/IP connection. A
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Table 4.1: General Camera Speci�cations [38].

Feature Speci�cation
Resolution 4096 x 1

Total Data Rate 160 MHz
Max. Line Rate 36 kHz

Pixel Size 7 µm
Output Format Camera Link Base
Responsivity up to 38 DN(nJ/cm2) @ 10 dB gain

Table 4.2: General Optics Speci�cations [39].

Feature Speci�cation
Lens 50 mm f/2.8

Maximum �lm format 24x36 mm
Scale range 2-15x

Smallest aperture 16
Flange focal length 43.5 mm
Max. diameter 50.0 mm

Flange to rear edge 13.0 mm

C++ client application was developed to acquire the data from the robot server. This
application also calculates the time-stamps; later, the velocity was calculated with this
information. The acquisition rate was limited to 5 Hz due to the communication settings
in the robot server. The client application asks the robot server for the current position
but the answer from the server has a delay, which is not constant. Because of this, the
acquisition rate was reduced to 5 Hz; at 5 Hz there are no delays in the robot response,
and thus the measurements are consistent.

Figure 4.2: FANUC M-6iB/6S [40].

To measure the orientation of the movement two IMUs were used. The IMUs are 9
degrees of freedom, composed by a gyroscope, an accelerometer and a magnetometer, each
of which has 3 degrees of freedom. In the context of this project only the gyroscope data
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was used. The model is POLOLU - MinIMU9DOF (Figure 4.3), and the speci�cations
of the sensors are as follows:

Figure 4.3: POLOLU - MinIMU9DOF, 9 DOF inertial measurement unit [15].

� POLOLU - MinIMU9DOF v2 [15]

* Gyroscope 3 degrees of freedom - L3GD20;

· Works up to ±2000 ◦/s;
· Resolution up to 16bit;

· Sensitivity up to 8.75 mdps/LSB;

· Frequency up to 760 Hz;

� I2C communication;

� Possibility of powering at 3.3V-Vdd or 5V-Vin.

These IMUs are part of the work developed at the laboratory by Rafeiro [28]. In is
work, Rafeiro, developed an IMU network composed by a microcontroller which makes
the acquisition from the IMUs and sends it to a computer. In the �gure 4.4) there is the
scheme of the connections between the IMUs and the computer. The microcontroller is
an Arduino Uno and it deals with the I2C communication with the IMUs.

Figure 4.4: Scheme of the connections PC - IMU [28].

4.2 Materials and Samples

To test the method in di�erent textures, four samples of "ground" were used. With
these samples it was possible to test the usability of the method in di�erent texture
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(a) Concrete. (b) Stone.

(c) Asphalt. (d) Cork.

Figure 4.5: Ground samples used in the experiments.

sizes, regularity and color. The samples used were concrete, stone, asphalt and cork, as
shown in Figure 4.5.

In all the experiments, the illumination was controlled to ensure repeatability through-
out the day. Sunlight has been blocked and arti�cial light from two 500 W spotlights
were used.

4.2.1 Experimental Setup

The �rst idea was to �x the camera on the robot, and then, reproduce movements with
the camera faced to the ground. This was not possible as the camera support was not
strong enough to deal with the accelerations and decelerations which caused vibration.
To solve this problem, the camera was mounted stationary on a tripod and the ground
materials were �xed on the robot to reproduce the movements. The setup used in the
experimental procedure is illustrated in Figure 4.6. A plastic board was �xed on the
robot arm, on which were �xed the sample materials, the calibration pattern and the
gyroscopes. The camera was installed on a tripod with yaw, pitch, and roll adjustments.
The illumination was directed to the material in a way to avoid shadows.

With this setup it was possible to ensure repeatability throughout the experiments.
The procedure for each experiment was as follows:

� Experimental Procedure

� Camera positioning - The camera is positioned at the working distance from
the robot, faced to the calibration pattern;
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Camera
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Robot

Calibration

Pattern

Lighting

Figure 4.6: The experimental setup on the industrial robot.

� Focus adjustment - The optics focus is adjusted until the lines are clearly
visible;

� Camera calibration - The angle of the camera is adjusted until the distance
between the pairs of lines is equal, after this the camera will be horizontal to
the movement and the �eld of view is determined. After this step the camera
will not be moved anymore;

� The ground materials are installed in the robot and the working distance is
adjusted to compensate the thickness of the material. The distance is com-
pensated adjusting the robot position;

� The measurements are made with the di�erent velocities and materials;

This procedure was repeated to the other distances. The distance between the camera
and the material was measured from the tip of the optics to the face of the material, as
illustrated in Figure 4.7. In each measurement a video with all the frames is recorded
and the positions from the robot are stored on a text �le for posterior computational
processing. For the circular movements the data from the gyroscopes is also stored in a
text �le, synchronized with the robot data.

4.3 Movements

To prove the ability of this method, it is necessary to make experiments with several
types of movements, to simplify the problem, those experiments were divided in four
phases. All the movements were made with a length of 500 mm.

The movements were repeated for each sample material. The velocities used in the
experiments were 100, 500 and 1000 mm/s. It was not possible to go higher than 1000
mm/s due to the fact that the base of the robot was not �rmly �xed to the ground. So,
for safety concerns, the maximum velocity was limited.
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Figure 4.7: Illustration of the working distance.

4.3.1 Parallel movement

The �rst movement of the experiments was horizontal straight movements with constant
distance to the ground and constant velocity. The movement was always parallel to the
axis of the line scan sensor; to ensure this, the camera was calibrated as stated in section
4.4. This movement was made at the distance of 200 mm and 300 mm to the ground.
The experiment was repeated for 100, 500 and 1000 mm/s for each distance. On Figure
4.8 is a representation of the lines captured, each rectangle is a line scan; in case the
angle θ is zero degrees, the lines captured will overlap in a straight line.

Figure 4.8: Illustration of the concept of the diagonal movement.

4.3.2 Diagonal movement

The diagonal movements were similar to the parallel on, but with an angle. This is
important to study the e�ect of having a perpendicular component on the movement.
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This can happen when the vehicle is sliding or when the sensor is poorly installed. The
distance and velocity was also constant. This movement was made at the distance of
200 mm and 300 mm to the ground. The experiment was repeated for 0, 2.5, 5 and 10
degrees of angle, and each angle repeated for 100, 500 and 1000mm/s. This movement is
illustrated on Figure 4.8, showing that sections of the lines will overlap due to its width.

4.3.3 Circular movement

The third movement was circular and aims to study the ability of this system to deal
with rotations on the successive frames. The movements were made to simulate a curve
of a vehicle with Ackermann steering. This movement was made at the distance of 200
mm and 300 mm to the ground. The experiment was repeated for 2, 5, and 10 meters of
circle diameter and each of which repeated for 100, 500 and 1000 mm/s.

Figure 4.9: Illustration of the concept of the circular movement.

4.3.4 Oscillatory movement

The last movement was made with changing distance of the camera to the ground to
study the e�ect of changing the focal length and magni�cation of the lens, this is a
situation that happens in real world environments like having an irregular pavement or
having �uctuations on the vehicle suspension. The movement is as illustrated on Figure
4.10; it is a sinusoid with amplitude of 25 mm.

4.4 Camera Calibration

Camera calibration is a very important step, it is necessary to get the relationship between
the object coordinates and the image coordinates. With known parameters of the camera
model, including internal parameters and external parameters, it is possible to determine
this transformation. Calibration is used to determine these parameters. Camera matrix
is one of the important internal parameters and position and orientation of the sensor to
the world coordinate system are some of the important external parameters [41].

In order to calculate the ground displacement after displacement between successive
frames is necessary to know the relationship between the image size and the �eld of view
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  Optics at a 

fixed distance

Ground at a variable

          distance

Figure 4.10: Illustration of the concept of the oscillatory movement.

size. By knowing this relation makes is possible to calculate the real ground displacement
at a given distance from the ground. The �eld of view is obviously dependent of the
distance of the camera to the ground and for a better result it is essential to know this
distance. Therefore, in a real implementation, a method of estimating this distance
should be available.

The experimental procedure proposed will require that the sensor is parallel to the
movement; the image, being 1-D, brings di�culties to ensure that. To guarantee that the
sensor is parallel to the movement, a calibration method suggested by [41, 42] is used.
The method implies the use of a pattern of vertical parallel lines crossed with diagonal
lines, parallel to each other (�gure 4.11).

Figure 4.11: Pattern used for line scan cameras calibration [41].

With this con�guration, it is easy to see that when the camera is completely horizontal
the spaces between the pairs of lines will have an equal distance, and when the camera
is oblique these spaces will have a tendency to increase or decrease depending on the
orientation of the sensor.

In Figure 4.12 it is possible to see a image of the process of calibration, the image
shown here is the representation of 480 repeated lines since the camera has not moved.
The camera is adjusted until all the distances between the pairs of lines are equal. Once
that is accomplished, the camera sensor is horizontal to the pattern and therefore hor-
izontal to the movement. To automate the process of calibration, a Matlab script was
created which calculates the distance between the pairs of lines with precision. In the
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Figure 4.12 the distances are in pixels.

Figure 4.12: Image taken during the process of calibration.

4.5 Gyroscope's Calibration

Typically, gyroscopes show a systematic error in their measurements which can induce
errors that can be harmful to movement estimation. These systematic errors are usually
named bias. This process of calibration has the objective of determining the di�erence
between the measurements and the real value. This process can be used further to
compensate the bias and ensure a better precision.

To calibrate the gyroscopes, a static position was imposed to them and then the
measurements were done. The mean di�erence compared to the reference, which is 0 °/s
in this case, was calculated to be used as compensation. To improve the precision even
more, two gyroscopes were used and the �nal value to consider was the mean of the two
already calibrated gyroscopes.
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Figure 4.13: Raw data from two gyroscopes on stationary position; Z axis at 40 Hz.

As illustrated in Figure 4.13, the gyroscopes showed biases from the reference value
(0 °/s). Figure 4.14 shows the result of the o�set correction. Figure 4.15 show the �nal
result of the o�set correction and average of the two gyroscopes. Finally, in Table 4.3
the results for standard deviation and mean values of the gyroscope's measurements are
shown. It is clear that using two gyroscopes with o�set correction decreases the deviation
of the readings; also the mean value has a residual di�erence.
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Figure 4.14: Data from two gyroscopes with o�set compensation; Z axis at 40 Hz.
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Figure 4.15: Result of the average of two calibrated gyroscopes; Z axis at 40 Hz

Table 4.3: Standard deviation and mean value from the gyroscopes - Z axis in stationary
position.

Standard Deviation (o/s) Average Value (o/s)

Raw data
Gyroscope 1 0.3760 -1.9124
Gyroscope 2 0.4391 -1.9362

With o�set correction
Gyroscope 1 0.3760 -0.0877
Gyroscope 2 0.4391 -0.0533

Average of the two gyroscopes 0.2932 -0.0805
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Chapter 5

Results and Discussion

This chapter describes and discusses the experimental results and its discussion. First,
the results of all the movements are presented. Next, a simulation of higher velocities is
made, using the method of sub-sampling. And at last the results are discussed.

The optics magni�cation was kept �xed through the experiments. At the distance of
200 mm the �eld of view was 50.67 mm and at the distance of 300 mm the �eld of view
was of 77.65 mm.

The movements were captured by the camera and the proprietary software saves it in
.avi video format. The videos were then processed in matlab, the frames were extracted
and merged into an only image with all the frames of the movement. An example of
these images is shown in Figure 5.1. Figure (a) shows a movement using cork at distance
200 mm and velocity 500 mm/s; �gure (b) shows a movement using concrete at distance
200 mm and velocity 500 mm/s.

Wile performing the �rst experiments it was found that the software was not working
properly and it was not possible to capture images in full resolution (1× 4096 pixels), so
the image acquisition was made in half resolution (1× 2048 pixels). The reason for this
event is unknown and it might have been a malfunctioning driver.

Overall, the best results occurred using cross-correlation. In comparison with the
methods of similarity, using cross-correlation were obtained higher values of coe�cient of
correlation. Also, the cross-correlation algorithm using FFT was, in average, ten times
faster than the algorithm with the similarity coe�cient methods. For those reasons, the
following results are the ones made with cross-correlation.

5.1 Experimental Results

In this section there will be presented the results of the experiments. The images taken
with the camera were processed with the algorithm shown on section 3.6 using cross-
correlation.

This section show the results using the algorithm described in section 3.6.3. After
these results it was introduced an improvement to the algorithm, that will be explained
in section 5.2; the analysis was then repeated using that algorithm. Table 5.1 shows the
plan of the results with the numbering for each subsection.
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(a) Cork. (b) Concrete.

Figure 5.1: Illustration of the �nal image of the whole movement. Each line scan captured
is merged vertically into one only image with all the scans made along the movement.
These images are of size n× 2048, where n is the number of scans.
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Table 5.1: Page numbering of the results with the simple algorithm and with the dynamic
sub-sampling.

Simple analysis Dynamic sub-sampling
Parallel 39 54
Diagonal 42 57
Circular 43 58
Oscillatory 49 64
Discussion 51 66

5.1.1 Parallel Movement

For the parallel movement the velocity estimated was highly similar for all of the ma-
terials. The following �gures, show the plots for the velocity calculated with the data
collected from camera. Each �gure shows, also, the velocity plot from the robot (ground
truth). The measurements presented were made on concrete and it should be emphasized
that the plots for the other materials are similar.

Figure 5.2 shows a big o�set between the velocity calculated by the camera sensor
and the ground truth. This is due to the fact that the correlation algorithm only detects
a pixel displacement that is a multiple of 2. The pixel displacement calculated here was
2 and it is equivalent to 123.71 mm/s.

Figure 5.3, 5.4 and 5.7 show consistent measurements from the image sensor.
Figure 5.5 show high �uctuations of the velocity, between 0 and 189.5735 mm/s.

Here the successive frames were so similar to each other that the computed displacement
oscillated. At some cases the displacement calculated was 2 pixels and at others had the
value of 4, that caused the velocity �uctuation.

Figure 5.6 shows an o�set on the velocity measured by the sensor and also some
�uctuations. Again, the o�set was caused because the pixel displacement is always an
integer and converting it to velocity induces error.

Table 5.2 show the velocity errors for all the movements with all the materials. For
the velocity it was calculated the average error and the maximum error using the robot
as reference. It was also calculated the error for the total distance traveled. The results
show that the tendency of the error is the same to all the materials.

As expected, the error for 100 mm/s at the distance of 200 mm is high due to
the o�set calculated. The same happened for 500 mm/s at the distance of 300 mm.
The higher error values were, as expected, for 100 mm/s at 300 mm since the velocity
measurements had high �uctuation. At the distance of 300 and velocity of 1000 mm/s
there was a small o�set and that caused an error around 5%. For the other cases the
results were satisfactory with an error around 1%.
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Figure 5.2: Parallel movement - Velocity plot - 100 mm/s at distance of 200 mm.
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Figure 5.3: Parallel movement - Velocity plot - 500 mm/s at distance of 200 mm.
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Figure 5.4: Parallel movement - Velocity plot - 1000 mm/s at distance of 200 mm.
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Figure 5.5: Parallel movement - Velocity plot - 100 mm/s at distance of 300 mm.

0 0.5 1 1.5
0

100

200

300

400

500

600

Time (s)

V
e

lo
c
it
y
 (

m
m

/s
)

 

 

Sensor

Robot

Figure 5.6: Parallel movement - Velocity plot - 500 mm/s at distance of 300 mm.
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Figure 5.7: Parallel movement - Velocity plot - 1000 mm/s at distance of 300 mm.
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Table 5.2: Parallel movement - Summary of error results.

Concrete Cork Stone Asphalt
Distance
Separation
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

200
100 23.71 24.20 23.71 24.00 23.40 22.92 23.71 24.00
500 1.03 0.50 1.03 0.47 1.03 0.65 1.03 0.50
1000 1.03 0.76 1.03 0.75 1.03 0.77 1.03 0.75

300
100 62.74 49.26 13.53 5.83 22.37 12.21 53.12 49.20
500 13.57 11.65 13.16 11.17 12.08 10.09 13.20 11.32
1000 5.21 4.68 5.21 4.76 5.21 4.67 5.21 4.51

5.1.2 Diagonal Movement

For the diagonal movement the velocity plots were highly similar to the parallel one. In
nature the two movements are very similar, only the diagonal has an angle applied to it.

Table 5.3 shows the average velocity and total distance relative error for all the
movements with all the materials at the distance of 200 mm. Table 5.4 shows the results
for a distance of 300 mm. It was calculated the average error and the maximum error
using the robot as reference.

Here, it is possible to see that the tendency of the error is the same as for the parallel
movement. In fact, the results were similar in the two cases, being even equal in most
of the movements. This is an evidence that this measuring method is robust even when
the image sensor has a rotation relative to the line of movement.

Table 5.3: Diagonal movement - errors for a separation of 200 mm.

Concrete Cork Stone Asphalt

Angle
(◦)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

2.5
100 23.71 24.37 23.71 24.27 23.32 23.10 23.71 24.37
500 1.03 0.21 1.03 0.32 1.03 0.08 1.03 0.23
1000 1.03 0.07 1.03 0.03 1.03 0.10 1.03 0.10

5
100 23.71 25.35 23.71 24.66 22.97 22.42 23.71 25.20
500 1.03 0.30 1.03 0.27 1.03 0.01 1.03 0.31
1000 1.03 0.53 1.03 0.02 1.03 0.15 1.03 0.43

10
100 23.71 19.84 23.71 26.13 23.32 24.18 23.71 18.20
500 1.03 0.86 1.03 0.98 1.03 0.90 1.03 0.76
100 1.06 0.34 1.02 0.67 1.03 0.61 1.03 0.40
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Table 5.4: Diagonal movement - errors for a separation distance of 300 mm.

Concrete Cork Stone Asphalt

Angle
(◦)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

2.5
100 67.04 52.56 16.19 7.48 23.45 28.36 56.12 40.21
500 13.48 12.38 11.59 10.33 9.51 8.56 13.20 12.46
1000 5.21 3.94 5.21 3.97 5.21 4.02 5.21 3.90

5
100 51.21 38.33 13.60 6.36 0.81 1.74 49.30 47.65
500 3.49 4.30 10.27 9.32 10.93 9.95 3.20 4.12
1000 5.21 3.36 5.21 4.00 5.21 3.98 5.21 3.42

10
100 43.78 30.20 9.10 4.90 0.53 0.98 39.25 37.24
500 2.79 1.32 6.05 4.12 3.69 4.39 2.54 1.23
100 5.21 3.47 5.21 3.27 5.21 3.32 5.21 3.12

5.1.3 Circular Movement

Figures 5.8, 5.9, 5.10, 5.11, 5.12, 5.13 show the generic velocity plots for the circular
movement at the various velocities and distances. It shows also the trajectory made by
the robot versus the one estimated by the camera and gyroscopes.

Tables 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 show the error and �nal position deviation
for all the experiments. The tables show the average velocity error and total distance
error, they also show the X and Y coordinates deviation and the euclidean distance
between the end path points estimated and the ground truth. The �nal position of the
robot was (x, y) = (500, 0) and the X, Y deviations are calculated as the di�erence
between these and the ground truth.

In general, the estimated trajectories made with the camera and gyroscopes showed
small deviation from the reference. Except for the experiments at 100 mm/s wish had
high errors in the longitudinal velocity estimation.
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Figure 5.8: Velocity and position plot for velocity of 100 mm/s - diameter of 2 m - at
distance 200 mm.

Ricardo Luís da Mota Silva Dissertação de Mestrado / Master Thesis



44 5.Results and Discussion

0 0.5 1 1.5
0

50

100

150

200

250

300

350

400

450

500

Time (s)

V
e

lo
c
it
y
 (

m
m

/s
)

 

 

Sensor

Robot

0 50 100 150 200 250 300 350 400 450 500
−14

−12

−10

−8

−6

−4

−2

0

2

Y
 (

m
m

)

X (mm)

 

 

Camera + Gyros

Robot

Figure 5.9: Velocity and position plot for velocity of 500 mm/s - diameter of 5 m - at
distance 200 mm.
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Figure 5.10: Velocity and position plot for velocity of 1000 mm/s - diameter of 10 m -
at distance 200 mm.
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Figure 5.11: Velocity and position plot for velocity of 100 mm/s - diameter of 5 m - at
distance 300 mm.
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Figure 5.12: Velocity and position plot for velocity of 500 mm/s - diameter of 10 m - at
distance 300 mm.
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Figure 5.13: Velocity and position plot for velocity of 1000 mm/s - diameter of 2 m - at
distance 300 mm.
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Table 5.5: Circular movement - errors for concrete at a distance separation of 200 mm.

Concrete
Error Deviation

Distance
Separation
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

200

2
100 23.71 25.34 120.38 13.24 121.10
500 1.03 0.07 12.34 0.55 12.35
1000 11.15 8.97 60.69 1.90 60.72

5
100 23.71 26.65 132.97 0.72 132.97
500 1.03 0.13 7.36 1.19 7.45
1000 1.03 0.49 12.84 0.74 12.86

10
100 23.71 24.12 120.40 16.39 121.51
500 1.03 0.69 8.21 19.11 20.80
1000 1.03 1.03 12.83 19.00 22.93

Table 5.6: Circular movement - errors for concrete at a distance separation of 300 mm.

Concrete
Error Deviation

Distance
Separation
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

300

2
100 4.74 3.09 22.92 11.12 25.48
500 24.17 20.55 115.17 1.10 115.17
1000 5.21 3.89 35.58 1.50 35.61

5
100 40.58 27.55 138.34 7.98 138.57
500 6.02 5.42 19.34 0.42 19.35
1000 5.21 4.11 31.21 0.63 31.22

10
100 64.52 51.30 257.22 13.86 257.59
500 13.24 11.38 51.15 18.99 54.56
1000 5.21 4.67 31.05 18.97 36.39
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Table 5.7: Circular movement - errors for cork at a distance separation of 200 mm.

Cork
Error Deviation

Distance
Separation
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

200

2
100 23.71 25.18 119.52 13.20 120.25
500 1.03 0.02 12.88 0.02 12.88
1000 9.82 7.82 55.89 2.13 55.93

5
100 23.71 24.32 120.82 3.90 120.89
500 1.03 0.04 7.75 1.25 7.85
1000 1.03 0.37 13.01 0.81 13.04

10
100 23.71 24.01 119.93 16.38 121.04
500 1.03 0.69 9.07 19.19 21.23
1000 1.03 1.02 13.58 19.04 23.39

Table 5.8: Circular movement - errors for cork at a distance separation of 300 mm.

Cork
Error Deviation

Distance
Separation
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

300

2
100 5.21 3.04 19.92 4.00 20.32
500 24.17 20.53 115.68 1.01 115.68
1000 5.21 3.98 36.13 1.58 36.17

5
100 3.22 0.41 0.63 3.79 3.84
500 8.39 7.31 44.78 0.06 44.78
1000 5.21 4.17 31.75 0.60 31.76

10
100 11.07 4.20 21.11 16.61 26.87
500 10.43 8.27 34.93 19.35 39.93
1000 5.21 4.74 31.98 18.99 37.19
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Table 5.9: Circular movement - errors for stone at a distance separation of 200 mm.

Stone
Error Deviation

Distance
Separation
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

200

2
100 18.58 15.88 69.39 19.68 72.12
500 1.04 0.09 11.27 0.14 11.27
1000 4.38 3.14 32.13 1.80 32.18

5
100 22.60 21.77 104.14 4.94 104.26
500 1.03 0.19 7.31 1.27 7.42
1000 1.03 0.34 12.13 0.76 12.15

10
100 23.04 22.26 108.09 16.04 109.27
500 1.03 0.81 8.52 19.23 21.03
1000 1.03 1.04 13.32 19.06 23.26

Table 5.10: Circular movement - errors for stone at a distance separation of 300 mm.

Stone
Error Deviation

Distance
Separation
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

300

2
100 5.20 3.53 22.59 10.35 24.85
500 24.17 20.70 115.50 1.02 115.50
1000 5.21 4.06 36.28 1.41 36.31

5
100 4.52 3.82 19.76 3.18 20.01
500 8.40 7.44 44.79 0.22 44.79
1000 5.21 4.17 31.30 0.55 31.30

10
100 3.88 3.80 19.99 17.07 26.28
500 5.90 4.25 15.72 19.22 24.83
1000 5.21 4.86 32.27 19.01 37.45
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Table 5.11: Circular movement - errors for asphalt at a distance separation of 200 mm.

Asphalt
Error Deviation

Distance
Separation
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

200

2
100 23.71 25.34 120.38 13.24 121.10
500 1.03 0.07 12.34 0.55 12.35
1000 11.15 8.97 60.69 1.90 60.72

5
100 23.71 26.65 132.97 0.72 132.97
500 1.03 0.13 7.36 1.19 7.45
1000 1.03 0.49 12.84 0.74 12.86

10
100 23.71 24.12 120.40 16.39 121.51
500 1.03 0.69 8.21 19.11 20.80
1000 1.03 1.03 12.83 19.00 22.93

Table 5.12: Circular movement - errors for asphalt at a distance separation of 300 mm.

Asphalt
Error Deviation

Distance
Separation
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

300

2
100 4.74 3.09 22.92 11.12 25.48
500 24.17 20.55 115.17 1.10 115.17
1000 5.21 3.89 35.58 1.50 35.61

5
100 40.58 27.55 138.34 7.98 138.57
500 6.02 5.42 19.34 0.42 19.35
1000 5.21 4.11 31.21 0.63 31.22

10
100 64.52 51.30 257.22 13.86 257.59
500 13.24 11.38 51.15 18.99 54.56
1000 5.21 4.67 31.05 18.97 36.39

5.1.4 Oscillatory Movement

For the oscillatory movement the velocity measurements were made at the initial distance
of 200 mm, increasing to 225 mm, back to 200 mm and then decreasing to 175 mm. At
the middle the robot did a small pause.

The following �gures show the velocity plots for each material. Figure 5.14 shows
the velocity plot for concrete. An error measuring the velocity can be seen, caused by
the changes in magni�cation. Figure 5.15 shows the result for cork and it is similar to
the previous one. Figure 5.16 shows the result for stone, here the error was higher due
to the high �uctuation of the values calculated. Stone is a material almost texture-less
and the changes in magni�cation cause blur. This blur induces errors in the velocity
estimation. The other materials are less sensitive to the blur as they have bigger grains
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on its texture.
Table 5.13 shows the errors for these experiments. The average and maximum error

were calculated for velocity and the error for total distance traveled was also calculated.
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Figure 5.14: Oscillatory movement - Velocity plot - 500 mm/s at distance of 200 mm -
concrete

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

Time (s)

V
e
lo

c
it
y
 (

m
m

/s
)

 

 

Sensor

Robot

Figure 5.15: Oscillatory movement - Velocity plot - 500 mm/s at distance of 200 mm -
Cork.
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Figure 5.16: Oscillatory movement - Velocity plot - 500 mm/s at distance of 200 mm -
stone

Table 5.13: Error Results for oscillatory movement.

Velocity
(mm/s)

Avg. Velocity
Error (%)

Total Distance
Error (%)

Concrete

500

2.42 0.32
Cork 2.16 0.61
Stone 12.84 8.78
Asphalt 2.53 0.33
Concrete

1000

2.43 0.33
Cork 2.16 0.61
Stone 12.22 8.85
Asphalt 2.61 0.40

5.1.5 Results Discussion

While carrying ou the experiments the sensor showed an overall good result, with mea-
surements similar to the ones made on the robot. Although, there are several conditions
in which the precision is a�ected resulting in increased error.

In all the experiments made at 100 mm/s the error was very high. This is due to
the fact that the implemented algorithm only computes pixel displacements that are
integers. In this case the real displacement was 0.04 mm. At the distance of 200 mm,
the displacement calculated was 2 pixels and that is equivalent to 0.04948 mm.

In all the experiments the pixel displacement calculated was always 2 or a multiple
of 2, this can be seen in the example in Figure 5.17 were there is a plot of the pixel
displacement correspondent to a movement at 1000 mm/s. One possible explanation for
this event might be explained with the taping method of the camera. The camera used
in the experiments features a quad tap method to increase the acquisition speed. This
method, as described in section 3.4, divides the linear sensor in front/even, front/odd,
rear/even and rear/odd. The camera software recorded the images in half resolution and
it is possible that the software divided the full image and stored the odd section as the
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�rst line and the even section as the second line, and so on. However, this could not be
proved, because when the problem arose, the camera was no longer available to make a
more detailed investigation.
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Figure 5.17: Parallel movement - Velocity plot - 100 mm/s at distance of 200 mm with
dynamic sub-sampling.

It is also possible to see that successive frames captured can be so similar that the
algorithm fails to compute the correct displacement. This fact suggests that the mea-
suring system should have a variable acquisition rate or the algorithm should adapt to
the current velocity. Overall, the results were better at the distance of 200 mm. At 300
mm the errors were higher and the only acceptable results were at the velocity of 1000
mm/s. This leads to the conclusion that increasing the �eld of view reduces the ability
to measure small velocities.

The results for the diagonal movements show that having the camera sensor with an
angle of up to 10◦ does not have an e�ect on the velocity measured. At the distance of
200 mm the errors were the same as the parallel movement. At 300 mm the errors were
higher and the only, as previously, and the only matching with the parallel movement
was at the velocity of 1000 mm/s. This leads to the same conclusion that increasing the
�eld of view reduces the ability to measure small velocities. These results are important
as they prove that the vehicle can have sideways movements and the sensor still being
able to measure the velocity accurately. Also, these results show that the camera sensor
will operate properly even if it is poorly installed.

The circular movement showed similar results to the previous ones. It is clear that a
line scan sensor can measure longitudinal velocity even when the movement is not linear.
A automobile has a typical turning diameter of about 10 m and here was shown that
the sensor can perform well to diameters as low as 2 m. The trajectories estimated were
close to the ground truth, except when the longitudinal velocity is poorly estimated. The
error in the trajectory is mostly due to the longitudinal velocity deviations and not due
to gyroscopes deviations.

For the oscillatory movement it was shown that measuring the velocity with a small
change on the optics magni�cation is possible, although with higher errors than the
previous situations. The measurements showed some �uctuations but on average the
error was small and the total distance computed had a very small error, except for stone
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were the average error was 12.84 %. The surface texture is an important variable in this
type of movement, as a texture-less surface like stone can induce higher errors. It might
be possible to solve this problem with telecentric lenses, which have a magni�cation
invariable with the target distance.

Looking at the tables of results it is possible to see that the value of the average error
value was the same in many di�erent situations. A value that appeared often was 1.03%
for the target velocities of 500 and 1000 mm/s. This is due to the low resolution. At
500 mm/s the value of displacement calculated was 8. At 1000 mm/s the displacement
calculated was exactly the double the previous, 16 pixels, and velocity is the double so
the error is exactly the same.

5.2 Results with Dynamic Sub-Sampling

After the previous results it is clear that this method has high error when dealing with
low velocities; to improve the measurements, the resolution of the sensor would need to
be higher. Another alternative to improve the precision is to reject the lines that are close
to each other. In this section is proposed an improvement to the algorithm to increase
the accuracy at low velocities.

This algorithm consists in using one reference line, then, each line captured is cor-
related to the reference until a minimum displacement is found. After the minimum
displacement is found the current line becomes the new reference. The process is illus-
trated in Figure 5.18. The distance can be calculated with the algorithm for the similarity
coe�cients or cross-correlation.

Distance > d_min?

Calculate Distance

Capture new line n=n+1

Reference line = line n

Capture line n=1

Start

false

true

Figure 5.18: Illustration of the algorithm for dynamic sub-sampling. Where n represents
the line number and d_min represents the minimum displacement.
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This will reduce the sampling rate because the intermediate displacements are dis-
carded but will improve the ability to measure low velocities. This was considered to be
Dynamic Sub-Sampling.

This algorithm was applied to all the experiments, as in the previous section, and the
results are shown in the following subsections. The minimum displacement required was
16 pixels.

5.2.1 Parallel Movement

the velocity estimated was highly similar for all of the materials. Figures 5.19, 5.20, 5.21,
5.22, 5.23, 5.24 show the plots for the velocity calculated with the data collected from
camera. Each �gure shows, also, the velocity plot from the robot (ground truth). The
measurements presented were made on concrete and it should be emphasized that the
plots for the other materials are similar.

Table 5.14 show the velocity errors for all the movements with all the materials. For
the velocity it was calculated the average error using the robot as reference. It was also
calculated the error for the total distance traveled. The results show that the tendency
of the error is the same to all the materials.

With sub-sampling the big o�sets are no longer present, as expected, and the velocity
plots are now more similar to the ground truth plots.
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Figure 5.19: Parallel movement - Velocity plot - 100 mm/s at distance of 200 mm with
dynamic sub-sampling.
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Figure 5.20: Parallel movement - Velocity plot - 500 mm/s at distance of 200 mm with
dynamic sub-sampling.
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Figure 5.21: Parallel movement - Velocity plot - 1000 mm/s at distance of 200 mm with
dynamic sub-sampling.
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Figure 5.22: Parallel movement - Velocity plot - 100 mm/s at distance of 300 mm with
dynamic sub-sampling.

Ricardo Luís da Mota Silva Dissertação de Mestrado / Master Thesis



56 5.Results and Discussion

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

Time (s)

V
e
lo

c
it
y
 (

m
m

/s
)

 

 

Sensor

Robot

Figure 5.23: Parallel movement - Velocity plot - 500 mm/s at distance of 300 mm with
dynamic sub-sampling.
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Figure 5.24: Parallel movement - Velocity plot - 1000 mm/s at distance of 300 mm with
dynamic sub-sampling.
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Table 5.14: Parallel movement - Summary of error results with dynamic sub-sampling.

Concrete Cork Stone Asphalt
Separation
Distance
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

200
100 1.03 0.95 1.03 0.95 0.96 0.95 1.03 0.95
500 1.03 0.99 1.03 0.96 1.03 0.98 1.03 0.99
1000 1.03 2.41 1.03 2.30 1.03 2.35 1.03 2.23

300
100 1.09 1.07 1.03 0.94 0.99 0.96 1.07 1.03
500 1.10 0.69 1.11 0.56 1.11 0.70 1.10 0.70
1000 5.21 4.93 5.21 5.03 5.21 4.94 5.21 4.92

5.2.2 Diagonal Movement

For the diagonal movement the velocity plots were highly similar to the parallel one.
Again, with sub-sampling there no more big o�sets on the measurements.

Table 5.15 shows the average velocity and total distance relative error for all the
movements with all the materials at the distance of 200 mm. Table 5.4 shows the results
for a distance of 300 mm. It was calculated the average error and the distance using the
robot as reference.

Here it is possible to see that the tendency of the error is the same as for the parallel
movement. In fact, the results were similar in the two cases, having even equal results
in most of the movements. As seen in the previous section,the method continues robust
even when the image sensor has a rotation relative to the line of movement.

Table 5.15: Diagonal movement - errors for a distance separation of 200mm with dynamic
sub-sampling.

Concrete Cork Stone Asphalt

Angle
(◦)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

2.5
100 1.02 0.79 1.02 0.79 0.96 0.71 1.02 0.79
500 1.03 0.93 1.03 0.21 1.03 0.30 1.03 0.62
1000 1.03 1.70 1.03 1.59 1.03 1.86 1.03 1.42

5
100 1.02 0.08 1.03 0.56 0.92 0.40 1.02 0.13
500 1.03 0.29 1.03 0.18 1.03 0.28 1.03 0.33
1000 1.03 1.12 1.03 1.63 1.03 1.74 1.03 1.24

10
100 0.97 3.83 0.37 1.19 0.81 0.32 0.86 1.10
500 0.99 0.46 1.00 0.44 1.01 0.63 1.00 0.75
1000 1.07 2.01 1.07 1.34 1.03 1.07 1.07 1.95
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Table 5.16: Diagonal movement - errors for a distance separation of 300mm with dynamic
sub-sampling.

Concrete Cork Stone Asphalt

Angle
(◦)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

2.5
100 1.09 1.19 1.01 1.07 1.09 1.02 1.09 1.12
500 1.10 1.40 1.11 1.14 1.11 1.31 1.10 1.39
1000 5.21 4.20 5.21 4.29 5.21 4.21 5.21 4.23

5
100 0.64 1.43 0.97 1.31 1.10 1.55 0.86 1.21
500 0.16 0.69 0.93 1.02 1.10 1.41 0.65 0.70
1000 5.21 3.64 5.21 4.23 5.21 4.20 5.21 3.72

10
100 0.28 1.19 0.40 1.07 0.94 1.91 0.31 1.02
500 0.97 0.10 1.23 0.44 0.33 1.23 0.99 0.24
1000 5.26 3.76 5.21 3.55 5.21 3.58 5.21 3.40

5.2.3 Circular Movement

Figures 5.25, 5.26, 5.27, 5.28, 5.29, 5.30 show the generic velocity plots for the circular
movement at the various velocities and distances. It shows also the trajectory made by
the robot versus the one estimated by the camera and gyroscopes.

Tables 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, 5.24 show the error and �nal position
deviation for all the experiments. The tables show the average velocity error and to-
tal distance error, they also show the coordinates deviation and the euclidean distance
between the �nal position estimated and the ground truth.

An improvement using dynamic sub-sampling is clear, mostly for the plots at 100
mm/s because of the attenuation of the o�set seen in the previous section.
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Figure 5.25: Velocity and position plot for velocity of 100 mm/s - diameter of 2 m - at
distance 200 mm with dynamic sub-sampling.
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Figure 5.26: Velocity and position plot for velocity of 500 mm/s - diameter of 5 m - at
distance 200 mm with dynamic sub-sampling.
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Figure 5.27: Velocity and position plot for velocity of 1000 mm/s - diameter of 10 m -
at distance 200 mm with dynamic sub-sampling.
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Figure 5.28: Velocity and position plot for velocity of 100 mm/s - diameter of 5 m - at
distance 300 mm with dynamic sub-sampling.
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Figure 5.29: Velocity and position plot for velocity of 500 mm/s - diameter of 10 m - at
distance 300 mm with dynamic sub-sampling.
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Figure 5.30: Velocity and position plot for velocity of 1000 mm/s - diameter of 2 m - at
distance 300 mm with dynamic sub-sampling.
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Table 5.17: Circular movement - Errors for concrete at separation distance of 200 mm
using dynamic sub-sampling.

Concrete
Error Deviation

Separation
Distance
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

200

2
100 6.13 5.31 35.56 7.97 36.45
500 13.71 12.58 66.02 1.90 66.05
1000 27.63 29.53 156.35 0.53 156.35

5
100 1.03 2.57 15.10 1.13 15.14
500 1.03 0.71 7.20 1.50 7.36
1000 1.03 2.28 17.86 1.22 17.90

10
100 1.03 1.03 5.69 2.18 6.09
500 1.03 1.25 8.34 0.55 8.36
1000 1.03 2.68 17.70 0.61 17.71

Table 5.18: Circular movement - Errors for concrete at separation distance of 300 mm
using dynamic sub-sampling.

Concrete
Error Deviation

Separation
Distance
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

300

2
100 5.21 4.27 27.13 7.19 28.07
500 5.43 4.41 30.81 0.68 30.81
1000 5.38 4.53 33.87 0.23 33.87

5
100 0.55 0.58 0.62 2.28 2.36
500 0.41 0.31 1.61 1.24 2.03
1000 5.21 4.52 28.22 1.02 28.24

10
100 1.11 1.07 4.37 2.31 4.95
500 1.07 0.61 1.03 0.73 1.26
1000 5.21 4.93 28.32 0.72 28.33
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Table 5.19: Circular movement - Errors for cork at separation distance of 200 mm using
dynamic sub-sampling.

Cork
Error Deviation

Separation
Distance
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

200

2
100 4.94 4.12 30.11 8.76 31.36
500 11.65 11.33 57.03 1.89 57.06
1000 23.50 27.19 146.83 2.67 146.85

5
100 1.03 0.71 5.01 1.96 5.37
500 1.03 0.61 7.29 1.70 7.48
1000 1.03 2.03 17.33 1.44 17.39

10
100 1.03 1.03 5.79 2.17 6.19
500 1.03 1.20 9.07 0.50 9.09
1000 1.03 2.64 17.77 0.52 17.77

Table 5.20: Circular movement - Errors for cork at separation distance of 300 mm using
dynamic sub-sampling.

Cork
Error Deviation

Separation
Distance
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

300

2
100 5.32 4.27 27.09 5.99 27.74
500 8.63 7.58 46.48 0.27 46.48
1000 8.71 7.87 50.38 0.27 50.38

5
100 0.70 0.51 5.33 2.29 5.80
500 1.64 2.02 13.40 1.22 13.45
1000 5.21 4.51 28.92 1.16 28.95

10
100 0.62 0.45 0.92 2.29 2.46
500 0.91 0.03 1.57 0.51 1.65
1000 5.21 5.18 30.41 0.60 30.42
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Table 5.21: Circular movement - Errors for stone at separation distance of 200 mm using
dynamic sub-sampling.

Stone
Error Deviation

Separation
Distance
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

200

2
100 2.60 1.66 17.34 8.34 19.24
500 5.46 5.47 24.70 2.79 24.86
1000 10.86 15.76 94.32 5.01 94.45

5
100 1.03 0.71 4.96 1.96 5.33
500 1.03 0.52 6.65 1.65 6.85
1000 1.03 1.92 16.48 1.43 16.54

10
100 1.03 1.030 5.70 2.18 6.11
500 1.03 1.13 7.81 0.41 7.82
1000 1.03 2.70 17.56 0.47 17.57

Table 5.22: Circular movement - Errors for stone at separation distance of 300 mm using
dynamic sub-sampling.

Stone
Error Deviation

Separation
Distance
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

300

2
100 5.26 4.27 27.19 7.12 28.11
500 8.20 7.12 44.37 0.45 44.37
1000 7.87 7.13 46.80 0.16 46.80

5
100 0.77 0.63 5.91 2.34 6.36
500 2.30 2.33 14.94 1.20 14.99
1000 5.21 4.54 28.98 1.10 29.00

10
100 0.65 0.45 0.85 2.29 2.44
500 0.89 0.01 1.32 0.51 1.42
1000 5.21 5.18 30.15 0.60 30.16
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Table 5.23: Circular movement - Errors for asphalt at separation distance of 200 mm
using dynamic sub-sampling.

Asphalt
Error Deviation

Separation
Distance
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

200

2
100 6.13 5.30 35.56 7.97 36.44
500 13.70 12.58 66.01 1.89 66.04
1000 27.62 29.53 156.34 0.52 156.34

5
100 1.03 2.57 15.10 1.13 15.14
500 1.03 0.71 7.20 1.49 7.35
1000 1.03 2.27 17.85 1.22 17.89

10
100 1.030 1.03 5.68 2.18 6.09
500 1.03 1.24 8.34 0.55 8.36
1000 1.03 2.68 17.69 0.60 17.70

Table 5.24: Circular movement - Errors for asphalt at separation distance of 300 mm
using dynamic sub-sampling.

Asphalt
Error Deviation

Separation
Distance
(mm)

Diameter
(mm)

Target
Velocity
(mm/s)

Avg.
Vel.
(%)

Dist.
Travel.
(%)

X (mm) Y (mm)
Euclidean
Distance
(mm)

300

2
100 5.21 4.27 27.13 7.19 28.06
500 5.42 4.40 30.80 0.67 30.81
1000 5.38 4.53 33.86 0.23 33.86

5
100 0.55 0.58 0.61 2.28 2.36
500 0.40 0.30 1.61 1.23 2.03
1000 5.21 4.51 28.22 1.02 28.24

10
100 1.10 1.06 4.37 2.30 4.94
500 1.06 0.61 1.02 0.73 1.26
1000 5.21 4.92 28.32 0.72 28.33

5.2.4 Oscillatory Movement

The following �gures show the velocity plots for each material. Figure 5.31 shows the
velocity plot for concrete, Figure 5.32 shows the result for cork and Figure 5.33 shows
the result for stone.

Table 5.25 shows the errors for these experiments. The average and maximum error
were calculated for velocity and the error for total distance traveled was also calculated.
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Figure 5.31: Oscillatory movement - Velocity plot - 500 mm/s at distance of 200 mm -
concrete with dynamic sub-sampling.
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Figure 5.32: Oscillatory movement - Velocity plot - 100 mm/s at distance of 200 mm -
Cork with dynamic sub-sampling.
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Figure 5.33: Oscillatory movement - Velocity plot - 100 mm/s at distance of 200 mm -
stone with dynamic sub-sampling.
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Table 5.25: Error Results for oscillatory movement using dynamic sub-sampling.

Velocity
(mm/s)

Avg. Velocity
Error (%)

Total Distance
Error (%)

Concrete

500

2.65 1.26
Cork 4.96 2.77
Stone 5.69 3.70
Asphalt 2.55 1.16
Concrete

1000

2.45 1.36
Cork 4.91 2.87
Stone 5.53 3.10
Asphalt 2.65 1.26

5.2.5 Results Discussion

On the parallel movement the use of dynamic sub-sampling improved the results mostly
on the experiments at 100 mm/s. On the other situations the average error was the
same or had small variations. The velocity plots now have an acceleration phase that �ts
better with the ones from the ground truth opposed to the degree-like acceleration seen
on the previous section.

The results were consistent on the diagonal movements and the same tendency seen
previously occurred here too. The error results are very similar to the ones on the parallel
movement showing that the angle of the image sensor had approximately none impact.

For circular movements the improvements made by this algorithm were similar to the
previous situations. For 100 mm/s the error was signi�cantly reduced, in some cases
from around 23% to around 5%. Although with a diameter of 2 m the estimates for 500
and 1000 mm/s had an increased error. This is due to the fact that 2 meters of diameter
is a very tight curvature and that produces high rotation between the successive line
scans and thus a weaker similarity; then this algorithm reduces the sampling rate by
discarding some line scans and the correlation is made with more distant lines wish have
even weaker similarity. The similarity between lines is, of course, an essential parameter
and as the similarity decreases the error increases. Overall, for the other cases, the errors
maintained very similar to results with the previous algorithm. For tighter curvatures the
correlation only works with good results if sub-sampling is not used. For this reason the
algorithm may dynamically changes its minimum distance of pixel displacement based
on the data from the gyroscopes, to not compromise the sampling rate. Basically as the
curvature increases this minimum needs to be decreased. This solution would change its
level of sub-sampling to better suit the needs.

For the oscillatory movement the results were similar to the ones using the previous
algorithm. Only there was an improvement for the experiments with stone. In this case,
with the previous algorithm and as stated in Figure 5.16, the velocity measured was in
some cases zero; with the sub-sampling it was imposed a minimum displacement to be
read and that eliminated those bad estimates.

Looking at the tables of results it is possible to see that the value of the average error
value was the same in many di�erent situations. A value that appeared often was 1.03%
for the target velocities of 500 and 1000 mm/s. This is due to the low resolution. At
500 mm/s the value of displacement calculated was 8. At 1000 mm/s the displacement
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calculated was exactly the double the previous, 16 pixels, and velocity is the double so
the error is exactly the same.

This algorithm using sub-sampling reveals clear improvements when dealing with
low velocities without compromise for higher velocities. Although for it to operate with
guarantees it should adjust its "level" of sub-sampling based on how much the vehicle is
turning.

5.3 Parallel Movement With Gyroscopes

It is important to study the in�uence of the gyroscopes readings and its deviation to the
movement estimate when moving straight forward. In this case, due to the gyroscope's
drift, an error of orientation will appear. To study this e�ect it was used the previous
velocity plots from the parallel movement together with the gyroscopes readings. The
results are shown in Figures 5.34, 5.35, 5.36, 5.37, 5.38, 5.39. Table 5.26 shows the
�nal positions of each simulation using the longitudinal velocity estimated by the camera
and the gyroscope's readings. The reference was calculated using the same longitudinal
velocity estimations but with a reference angular velocity of 0 degrees per second.

On table 5.26 it is possible to see that the deviation is small and the higher the lon-
gitudinal velocity error the higher the �nal position deviation. Including the gyroscopes
data in this simulation had very little impact on the movement estimation. This proves
that even when the movement is a straight line, the gyroscope's drift does not degrade the
position estimates. However, these deviations can be signi�cant as the distance increases,
then higher precision, low drift gyroscopes may be used.

In Figure 5.37 it is possible to see that the velocity plot has high oscillations. In
this case the displacements calculated were 0 or 2 pixels, equivalent to a velocity of 0
or 189.5735 mm/s. This happened because the successive lines were so similar and the
resolution was low causing the correlation to fail in some cases.
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Figure 5.34: Velocity and position plot for velocity of 100 mm/s at distance 200 mm.
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Figure 5.35: Velocity and position plot for velocity of 500 mm/s at distance 200 mm.
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Figure 5.36: Velocity and position plot for velocity of 1000 mm/s at distance 200 mm.
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Figure 5.37: Velocity and position plot for velocity of 100 mm/s at distance 300 mm.
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Figure 5.38: Velocity and position plot for velocity of 500 mm/s at distance 300 mm.
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Figure 5.39: Velocity and position plot for velocity of 1000 mm/s at distance 300 mm.
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Table 5.26: Final positions for parallel movement with gyroscope's data.

Distance
Velocity
(mm/s)

X reference
(mm)

X estimated
(mm)

Y reference
(mm)

Y estimated
(mm)

200 500
621.00 615.78 0.00 1.22
497.50 498.06 0.00 0.58
496.20 498.66 0.00 0.53

300 1000
704.30 659.15 0.00 1.27
558.25 555.07 0.00 0.79
497.66 499.56 0.00 0.47

5.4 Correlation with Interpolation

One limitation of the algorithms used is that they only estimate a pixel displacement that
is an integer. For low velocities this resolution might be small and that can induce high
errors. A solution that can reduce the error is by doing the correlation with interpolation
to estimate displacements that are �oats.

The interpolation is a quadratic interpolation of 3 uniformly spaced samples. After
applying one of the algorithms there will be a correlation coe�cient for each equally
spaced shift. This method performs a quadratic interpolation between the maximum
correlation coe�cient and its neighbors.

In this section there are presented four examples with the application of this improve-
ment. Figure 5.40, 5.41, 5.42, 5.43 show the velocity and pixel displacement plots of the
original algorithm (a) versus the algorithm with interpolation (b).

Table 5.27: Error results for Normal Correlation Vs Correlation with Interpolation.

Without Interpolation With Interpolation
Avg. Velocity
Error (%)

Distance
Error (%)

Avg. Velocity
Error (%)

Distance
Error (%)

Example 1 5.12 5.12 4.55 4.63
Example 2 1.03 0.92 0.89 0.88
Example 3 6.17 4.48 3.20 2.42
Example 4 1.14 0.95 1.13 0.94

Analyzing table 5.27 it is possible to see that using interpolation approximates the
velocity estimates to the ground truth and the average error decreases. Interpolation can
then be successfully used to increase the accuracy of the estimates with no compromise
in computation speed, since interpolation is a simple operation.
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Figure 5.40: Example 1 - 1000 mm/s at distance of 300 mm.
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Figure 5.41: Example 2 - 500 mm/s at distance of 200 mm.
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Figure 5.42: Example 3 - 500 mm/s at distance of 300 mm.
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Figure 5.43: Example 4 - 1000 mm/s at distance of 200 mm.

5.5 Sub-sampling

Sub-sampling is the process of reducing the sampling rate. When performing a sub-
sample of the video data, one can simulate a higher displacement and thus a higher
velocity movement. For example, using the 100 mm/s video and doing the computing
on intervals of 5 frames, the displacement will be 5 times higher and thus the velocity,
also 5 times higher. With sub-sampling it is possible to make a extrapolation of the data
to higher velocities.

To prove that using sub-sampling gives the same results as using the full sample some
simulations were made. A sample from 100 mm/s was used to simulate a movement with
a velocity of 500 and 1000 mm/s the errors were exactly the same as the ones calculated
using the full sample. The same was done with a sample form 500 mm/s simulating a
movement of 1000 mm/s and the error was also equal. This leads to the conclusion that
it is safe to do sub-sampling and extrapolate to higher velocities.

Next, simulations of 5, 10 and 20 m/s are made with the sample taken at 100 mm/s
on concrete. The results are shown in Figure 5.44, 5.45 and 5.46 and the error results are
presented on Table 5.28. These results show that at a sampling rate of 2500 Hz the sensor
can measure velocity up to 10 m/s with an average error of 0.2 % and a maximum error
of 5.15 %. At 20 m/s the results begin to show relevant �uctuations and a maximum
error of 35.67 % is reached.

Table 5.28: Error results for sub-sampling simulations.

Velocity (m/s) Avg. Error (%) Max. Error (%)
5 0.2 3.918
10 0.18 5.15
20 1.05 35.67

The results of the sub-sampling show that increasing the displacement increases the
global and the average error. At an acquisition frequency of 2500 Hz the measurements
are acceptable up to 10 m/s, if dealing with higher velocities one should increase the
sampling rate. This leads to the conclusion that for car-like velocities it is necessary to
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increase the sampling rate. For example if one wants to measure a velocity up to 120
km/h or 33.333 m/s, it would be necessary a sampling rate of 3.3333 × 2500 = 8333.33
Hz.
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Figure 5.44: Velocity plot at 5 m/s using sub-sampling from sample of 100 mm/s.
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Figure 5.45: Velocity plot at 10 m/s using sub-sampling from sample of 100 mm/s.
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Figure 5.46: Velocity plot at 20 m/s using sub-sampling from sample of 100 mm/s.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

To meet the proposed objectives, a study of the state of the art on odometry solutions
was developed. After that, a study was made to �nd the most suitable solution for the
problem and due to the advantages of �exibility, a visual odometry with a line scan image
sensor was the solution chosen for study.

Visual odometry with line scan sensors is a new area of study and very little literature
exists. So the main objective of this wotk was to �nd out the problems, limitations and
the relevant variables for the operation of this method.

It was proven that a line scan image sensor can operate as a velocity sensor under
controlled conditions for lighting and absence of vibration. Under these conditions the
sensor can estimate velocity with low error, about 1% on most of the cases. The sensor
performed well for straight line movements with the camera aligned and misaligned up to
a maximum of 10◦. For circular movements the sensor performed well and showed that
it is possible to operate when an automobile is executing maneuvers with a tight turning
radius. For situations when the focal distance is changing the results were satisfactory
for concrete and cork although they were poor for stone. This is a limitation for the
hardware used and can be improved using appropriate optics.

This method creates new possibilities for visual odometry. The most limiting features
of common visual odometry are the low velocity that can be estimated, due to low frame
rates of the common cameras; the complexity of the algorithms which are needed to
be used causing high computational cost and di�culty of real time application. The
line scan sensor needs less complex algorithms and can easily achieve high frame rates
necessary to measure high velocities.

The method shows promising results and further investigation and development should
be performed in order to study the applicability in real world scenarios.

6.2 Future Work

The results from this work showed that using a line scan sensor to measure velocity of
a automobile is possible in controlled conditions. The results are promising and further
investigation should be developed. Several variables should be investigated, like the e�ect
of lighting variation; the e�ect of introducing vibration and the e�ect of changing the
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focal distance. Outdoors experiments should also be realized with all those variables
introduced in the environment.

The optics used performed acceptably with variable focal length. Although to improve
even more the consistency of the measurements telecentric lens may be used, this lens
have a magni�cation that is invariable with the focal distance. This means that even when
with irregular ground or with oscillations from the vehicle suspension, the estimates will
be more precise. Other solution for high focal distance variations might be a combination
of several lenses, each calibrated to operate at a speci�c distance. Then, the equipment
along with the distance information from another sensor, like a laser sensor, can commute
between the lenses to use the one most appropriated for the current distance.

To ensure that this method has good performance when dealing with circular move-
ments, the image sensor should be as tangential as possible to the line of movement.
When the image sensor is not tangent that means that the line scans will have a lat-
eral displacement; an high lateral displacement will eventually cause the system to fail
computing the correct longitudinal displacement. To ensure that the image sensor is
always tangent to the line of movement, a system using a servo motor relaying on the
gyroscopes readings can be used to align the image sensor. Basically the image sensor
would be mounted on a servo motor that would change its orientation as much as the
rotation given by the gyroscopes.

The use of an image sensor with higher sensitivity should be considered. In this work
the acquisition rate was limited to 2500 Hz due to the lack of brightness on the images.
This was caused by the low exposure time, causing the images to be dark. To solve this,
a higher sensitivity image sensor should be used to not compromise the quality of the
images at high frame rates.

In a real world scenario infra-red lighting can be used, as this type of light is invisible
to the human eye. This is important if the sensor is to be used by automobiles on
the public roads; it is important that the lighting for the sensor isn't a distraction for
the drivers. Also, the arti�cial infra-red lighting should be able overcome the infra-red
radiation from the sun. This is important as the radiation from the sun varies throughout
the day and the lighting should be as invariable as possible. Then the image sensor should
be sensitive to the wavelength of the infra-red radiation.
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